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Abstract

This paper presents a hydro-mechanical model for hysteretic damping force prediction of an
electrorheological (ER) damper which can be applicable to a small-sized passenger vehicle. A mathematical
model which well describes physical flow motion of the hydraulic system is formulated. Then, a cylindrical
type of ER damper is devised and its hysteretic behavior is empirically evaluated in the damping force
versus piston velocity domain. The measured damping characteristics are compared with those predicted
from the proposed hydro-mechanical model. In addition, the averaged error between the predicted and
measured damping force is calculated in order to evaluate the model accuracy.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Electrorheological (ER) and magnetorheological (MR) dampers have been proposed for
vibration attenuation of various dynamic systems including vehicle suspensions. It has been
demonstrated via experimental realization that unwanted vibrations of application systems can be
effectively controlled by employing semi-active ER or MR dampers [1–4]. In order to achieve
see front matter r 2004 Elsevier Ltd. All rights reserved.
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desirable control performance, it is necessary to have an accurate damping force model which can
capture the inherent hysteresis behavior of ER or MR damper. So far, several types of damper
models have been proposed and used to describe the damping force behavior of ER or MR
damper. The simple Bingham model [5,6] gives a good description of post-yield force behavior of
ER or MR damper, but the transition from pre-yield to post-yield is discontinuous and the
hysteretic behavior cannot be described. The hysteretic Bingham plastic model [4], the hysteretic
biviscous model [7,8], the nonlinear viscoelastic plastic model [9], the Bouc–Wen model [10,11],
the polynomial model [12] are effective models for prediction of the field-dependent hysteretic
damping force of ER or MR dampers. However, these models do not describe the flow motion of
the damper, which is inherent feature in hydraulic damper mechanism.
Consequently, the main contribution of this work is to propose a hysteresis damper model

which can describe the flow motion of the hydraulic system. In order to achieve the goal, a
cylindrical type of ER damper, which can be applicable to a small-sized passenger vehicle, is
adopted and its hysteretic behavior is experimentally evaluated in the damping force versus piston
velocity domain. The measured hysteresis characteristics of the field-dependent damping forces
are compared with those predicted from the models; simple Bingham model and the proposed
hydro-mechanical model. In addition, the averaged error between the predicted and measured
force is calculated in order to evaluate the model accuracy.
2. ER damper

The schematic configuration of a flow-mode ER damper tested in this study is shown in Fig. 1.
The ER damper consists of hydraulic and pneumatic reservoirs separated by a floating piston.
Inside of the hydraulic reservoir, the piston rod is attached to a piston head. During the piston
Fig. 1. Configuration of the ER damper.
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Fig. 2. Measured damping force characteristics. (a) Force vs. velocity cycles for 1.0Hz excitation and various electric

fields, (b) force vs. velocity cycles for 6.0 kV/mm and various excitation frequencies.
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motion, ER fluid flows through a gap between inner and outer cylinder electrodes in the piston
head and can be energized by applied electric fields. The principal design parameters are chosen as
follows: electrode length is 43mm and electrode gap is 0.65mm. On the other hand, the
composition ratio of the ER fluid employed in this study is 40% corn starch and 60% peanut oil
by weight. Nitrogen-filled pneumatic reservoir and floating piston located inside of the hydraulic
cylinder are used to prevent cavitation on the low-pressure side of the piston and accumulate the
ER fluid induced by the motion of the piston. In order to measure the field-dependent damping
force of the ER damper, a hydraulic excitation system has been used [2,3,5]. The sinusoidal
excitation was applied with the magnitude of 12.7mm.
Fig. 2(a) presents the measured damping force characteristics at the excitation frequency of

1.0Hz. As the applied electric field increases, the damping force also increases due to the
increment of yield stress of ER fluid under flow mode operation. We can see the Bingham-like
behavior which consists of the viscous damping force and field-dependent yield force in the high-
velocity region. In the low-velocity region, we can clearly observe the hysteresis loop. As the
electric field increases, the width of the hysteresis loop is enlarged and its slope increases. The
hysteresis loop at 0 kV/mm is mainly due to the frictional force of the seal components and
compliance effect inside the ER damper. This frictional force behaves as the field-dependent yield
force. When the electric field is applied to the electrodes, the sum of the field-dependent yield force
and frictional force affects the hysteresis behavior of ER damper. Fig. 2(b) shows the damping
force vs. velocity cycles with different excitation frequencies for the electric field of 6 kV/mm. For
higher excitation frequencies, the hysteresis loop widens and the hysteresis slope decreases.

3. Hydro-mechanical model

As a comparative model, the Bingham model is firstly introduced. In Bingham model, the yield
stress ðtyÞ of the ER fluid is described by

ty ¼ aEb (1)
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where E is the electric field, a and b are intrinsic values of the ER fluid which are to be
experimentally identified. Thus, the damping fore of the ER damper can be obtained [3] by

F ¼ c0v þ a1aEb sgnðvÞ (2)

In the above equation, v is the piston velocity, c0 the damping constant due to the viscosity of the
ER fluid, and a1 the geometrical constant. The second term is, of course, the controllable damping
force by input electric field of E.
A schematic configuration of the hydro-mechanical model proposed in this work is shown in

Fig. 3(a). Control volume of the electrode gap (#3) is lumped into the fluid inertance If and zero-
field flow resistance Rf. On the other hand, DPER is the pressure drop due to the yield stress of ER
fluid. Control volumes of lower, upper, and gas chambers (#1, #2, and #4) are represented by the
compliances C1, C2, and C4, respectively. From the hydraulic model shown in Fig. 3(a), the total
pressure drop due to the ER fluid passing through the electrode gap can be given by

DP ¼ P2 � P1 ¼ I f Af €xr þ Rf Af _xr þ DPER sgnð _xrÞ (3)

where

I f ¼
rl

Af

; Rf ¼
12Zl

b h3
; DPER ¼ 2

l

h
tyðEÞ; xr ¼ xf � x (4)

In the above, DP is the pressure difference between upper and lower chambers, P1 the pressure of
the lower chamber, P2 the pressure of the upper chamber, DPER the pressure drop due to the
electric field, xf the displacement of fluid inertance, and xr the relative displacement of fluid
inertance, and x the piston displacement. Here, r and Z are the density and the zero-field viscosity
of the employed ER fluid, respectively. Geometric parameters are as follows: l the electrode
length, h the electrode gap size, b the electrode gap width, and Af the cross-sectional area of the
electrode gap. By applying continuity augments to the lower and upper chambers, gas chamber
Fig. 3. Mathematic model of the ER damper. (a) Hydro-mechanical model, (b) analogous mechanical model.
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and electrode duct, the followings equations are obtained [13]:

C1
_P1 ¼ �ðA1 � Af Þ _x � Af _xr þ A4 _y (5)

C2
_P2 ¼ ðA2 � Af Þ _x þ Af _xr (6)

C4
_P4 ¼ �A4 _y (7)

where A1, A2, and A4 are piston areas of lower, upper, and gas chambers, y the displacement of
the floating-piston in the gas chamber, and P4ð� P1Þ the pressure of the gas chamber. By
eliminating the internal variables P1, P2, P4, and y from of Eqs. (3), (5)–(7), dynamic equations for
the damping force are obtained as follows:

F ¼ ApDP ¼ m�
f €xr þ cf _xr þ Fy sgnð _xrÞ (8)

m�
f €xr þ cf _xr þ Fy sgnð _xrÞ þ k1xr ¼ k2x ¼ k1Fx (9)

where

Ap �
A1 þ A2

2
; m�

f ¼ mf � m ¼ I f Af Ap � m; cf ¼ Rf Af Ap; Fy ¼ ApDPER (10)

F ¼
k2

k1
; k1 ¼ ApðA2 � Af Þ

1

C1 þ C4
þ

1

C2

� �
; k2 ¼ ApAf

1

C1 þ C4
þ

1

C2

� �

In the above, mn
f is mass effect of ER fluid, cf viscous damping effect of the flow resistance in the

electrode in the absence of the electric field, k1 and k2 the spring effects of ER damper which
represent the compliance effects of the lower, upper, and gas chambers, and Fy the yield force
which can be controlled by the electric field intensity. The post-yield force behavior loop is mainly
determined by the parameters cf and Fy. The width, slope, and smoothness of the hysteresis loop
in the pre-yield regions are determined by mn

f ; k1 and k2. The hysteresis loop shape factor m is
considered to the theoretical mass mf ð¼ If Af ApÞ for the smoothness of the pre-yield hysteresis
loop. The evolutionary variable xr can be obtained from Eq. (9). The excitation displacement x
can affect the damping force behavior of the ER damper through the second-order differential
equation. The mechanism of the proposed hydraulic model can be expressed by parallel and serial
combinations of a spring, a viscous dash-pot, and a Coulomb friction elements as shown in
Fig. 3(b). It is noted that the governing equations (8) and (9) well describe the flow motion of the
hydraulic ER damper.
4. Assessment of model

In order to minimize the mean square error between the measured and prediction force, the
parameter identification has been undertaken. In this work, a constrained least-mean-square
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(LMS) error minimization procedure available in the MATLAB is adopted [14]. The cost
functions J for the hydro-mechanical model is defined by

Jðcf ;Fy; k1; k2Þ ¼
XN

k¼1

½f ðtkÞ � f̂ ðtkÞ

2

(11)

where f̂ ðtkÞ is the force calculated using model (8) and (9), f ðtkÞ the measured force, and tk the time
at which the kth sample has been taken. The parameter m�

f ð¼ mf mÞ in Eqs. (8) and (9) is not
adopted for the parameter optimization. To get tendencies of the other parameters with respect to
the excitation frequencies and electric field intensities, the fixed value of m�

f is used for the
identification of the other parameters. The theoretical calculation of fluid inertia effect results in
mf ¼ 0:11 kg; and the pre-yield hysteresis loop shape factor m is tuned to 26.9 by empirical
intuition. The four parameters cf, Fy, k1, and k2 are estimated so as to minimize the cost function
J. Fig. 4 shows the optimized parameters of cf, Fy, k1, and k2, respectively. It is noted that the
stiffness k2 tends to increase as the electric field intensity increases, and the identified stiffness k1 is
smaller than k2. It is observed that the optimized parameters have the dependence on the electric
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Fig. 4. Identified parameters of the hydro-mechanical model. (a) Damping cf, (b) yield force Fy, (c) stiffness k1, (d)

stiffness k2.
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field intensity. Thus, arithmetic mean values of parameters (cf, k1, k2) at each frequency are
linearized with respect to the input electric field intensity and given as follows: cf ¼ 1055�
70E; k1 ¼ 326750� 26625E; and k2 ¼ 1533000þ 194000E: On the other hand, the yield force Fy

is represented by exponential form Fy ¼ 199:8þ 67:1E1:57: Thus, the dependence of damping
force on the electric field intensity is accounted in the hydro-mechanical model.
Now, the damping force vs. velocity cycles are reconstructed using the parameters obtained

from the optimization procedures. The plot is obtained by applying the electric field of 0 and 6 kV/
mm at the excitation frequency of 1.0Hz. For the Bingham model, the comparison of the
predicted and measured force vs. velocity is shown in Fig. 5(a). It is obvious that Bingham model
cannot capture the pre-yield hysteresis behavior of damping force, although it well represents
post-yield force vs. velocity behavior. Fig. 5(b) shows the force vs. velocity hysteresis cycles
reconstructed from the hydro-mechanical model with optimized parameters. Fig. 5(c) shows the
hysteresis cycles of the hydro-mechanical model with the parameters fitted by electric field
intensity. As shown in the figures, the pre-yield hysteresis force behavior is well represented by the
lumped mechanical parameters.
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Fig. 5. Comparison of damping forces between the measurement and prediction. (a) Bingham model, (b) hydro-

mechanical model with identified parameters, (c) hydro-mechanical model with fitted parameters.
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In order to compare model performance in the identified force time history, the averaged error
between the modeled and measured force time history is calculated for each model. By calculating
the force error, we obtain a quantitative measure of how well each model characterizes the
behavior of the ER damper. The relative root mean squared (rms) force error per cycle is defined
as follows:

Relative rms error ¼
½
Pm

k¼1½f ðtkÞ � f̂ ðtkÞ

2
1=2

½
Pm

k¼1½f ðtkÞ

2
1=2

� 100: (12)

In the above, m is the number of data over one cycle. The rms value of the force error is divided by
the rms value of the measured force. Fig. 6 shows the force errors for each model. As expected, the
error of the Bingham model is much larger than that of the proposed hydraulic-mechanical model.
The damping force prediction error of the hydro-mechanical model with the parameters
functionalized by electric field intensity slightly larger than the model with optimally identified
parameters. But it is evident that model prediction capability of the hydro-mechanical model with
the fitted parameters is much better than the conventional Bingham model.
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Fig. 6. Relative rms force error for the identification of data sets. (a) Bingham model, (b) hydro-mechanical model with

identified parameters, (c) hydro-mechanical model with fitted parameters.
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5. Concluding remarks

In this work, a hydro-mechanical model for the prediction of the field-dependent hysteretic
damping force of the ER damper was proposed. The model well describes physical flow motion of
the hydraulic-type ER damper. In addition, the proposed model can account for the compliance
effects manifested in the pre-yield hysteresis characteristics. It has been demonstrated that the
hysteretic behavior can be well reconstructed by utilizing the proposed model associated with the
optimally identified parameters. It is finally remarked that a feedback control performance of the
ER damper using the hydro-mechanical model will be undertaken in the near future.
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